If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6r^2+17r+12=0
a = 6; b = 17; c = +12;
Δ = b2-4ac
Δ = 172-4·6·12
Δ = 1
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1}=1$$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(17)-1}{2*6}=\frac{-18}{12} =-1+1/2 $$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(17)+1}{2*6}=\frac{-16}{12} =-1+1/3 $
| -4b-8(-2b-2)=54 | | -2b/13=8/13 | | 7x+2(2x+6)=144 | | 3/4q=15 | | 3/4h-12=8/5/8 | | B=9/8(j-6) | | 3x-92=44-5x | | 4x-2x-9=+2x+3 | | 2/7x+18=8-3/7x | | 5x=17x+40 | | 3(4x+7)=5(3x+3 | | 2/3(4.5x-1.5)=2/3(4.5x-1.5) | | 247=13(s-55)+35 | | 4x+12-4=8x+1-4x | | X^2=17x+40 | | m/2=m+7/6 | | -5/6=2.3w | | H/10+h/5=1290 | | (1+x)^4(1+2x)^16+3.11525(1+2x)^10=12.7355 | | 0.52+0.18x=3 | | 1+8r=-6r-2r+1 | | -q/3.5=9.2 | | 590+20x=30x | | X/2=x/40 | | 8(c-4)+8=5+c-29 | | 1.6y=0.8 | | .49x=7 | | 6/x=6/5x+1 | | -48-20=a | | -17=-5(8y-3) | | 17+5x=-5X+47 | | 3x-3=11x+11 |